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Abstract

The effects of thermal nonequilibrium on flows about

blunt bodies have not been studied numerically in isolation

from chemical reactions. Typically, air is modeled as a

perfect gas or as a chemically reacting mixture. In the

former case, significant errors result at Mach numbers

exceeding about 5. However, below Mach numbers around 8, the

effects of chemical reactions are negligible. This study

examines inviscid flow about a simple axisymmetric blunt-body

at moderate hypersonic speeds (Mach numbers between 5-8). A

first-order-accurate Roe scheme was used to compute solutions

of the Euler equations assuming different gas models: perfect

gas, thermal equilibrium, and thermal nonequilibrium. Two

vibrational relaxation models were used to examine thermal

nonequilibrium. Equilibrium and nonequilibrium shock standoff

distances deviated 10-15 percent from perfect gas

calculations. Nonequilibrium calculations produced striking

temperature and density gradients in the stagnation region

with an isolated "hot spot" near the shock.
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A COMPARISON OF MOLECULAR VIBRATION MODELING

FOR THERMAL NONEQUILIBRIUM AIRFLOW

I. Introduction

High velocities and Mach numbers, strong shock waves,

high-temperature phenomena, and shock/boundary-layer

interactions comprise a few aspects of hypersonic flows. Some

of these features are viscous in nature, but others also occur

in an inviscid environment. The inviscid blunt-body flow

features a strong shock which is normal to the nose, a thin

shock layer and thermo-chemical nonequilibrium. Viscous

features include "entropy swallowing" by the boundary-layer,

boundary-layer/shock interaction, and high heat-transfer

rates. This study concerns the inviscid flow about blunt

bodies in the absence of chemical reactions.

The very nature of high velocity and high-temperature

fluid flow makes it difficult and expensive to analyze or test

experimentally. Until recently, the mathematical non-

linearities associated with detached and curved shocks, as

well as high-temperature gas interactions and reactions, have

prevented a numerical approach to studying hypersonics.

However, with advances in Computational Fluid Dynamics (CFD),
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numerical solution techniques have become possible, and in

fact preferable.

The neglect of high-temperature gas effects still limits

the applicability of most numerical algorithms to hypersonic

problems. To illustrate, consider a reentry vehicle traveling

at 6 km/s. It will experience temperatures near the stagnation

point of about 6,000 OK for a reacting gas, but would endure

an astonishing (and unrealistically high) 15,000 °K in a

calorically perfect gas (1:19). This simplistic example shows

the importance of accurately modeling high-temperature flows.

In the rest of this chapter, the current status of both

CFD and hypersonic aerodynamics will be highlighted, as they

apply to this study.

A. Historical Background

Numerical Analysis of Blunt-Body Flows

The mixture of subsonic and supersonic regions in blunt-

body flows make consistent analysis difficult to achieve. In

fact, until 1966, no practical blunt-body solution existed to

provide valid initial conditions for a method of

characteristics solution in the supersonic region. This

changed in 1966 when Moretti and Abbett published the first

time-marching, finite-difference solution of the governing

unsteady Euler equations. Since the unsteady Euler equations

are hyperbolic in both subsonic and supersonic regions, they
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are mathematically consistent. Although Moretti and Abbett

employed the Lax-Wendroff finite-difference technique, the

philosophy remained the same when MacCormack's explicit,

predictor-corrector finite-difference method was later

applied. MacCormack's method has been widely used throughout

the 1970's and 1980's (1:169). Unfortunately, this method

requires several points to capture shocks, imposes strict

limits on time step size, and is not very robust. The

restriction on time step size is particularly limiting, since

it delays convergence and induces a factor of unpredictability

into the solution process. A new class of schemes has

recently arisen to address these issues, namely Total

Variation Diminishing (TVD) schemes.

Development of TVD/Roe Schemes

Many different schemes and algorithms have evolved to

solve the Euler equations (16,44,45,46). Most of these

numerical schemes arose from examinations of the Riemann

problem. The Riemann problem is governed by the 1-D inviscid

and frozen flow equation:

au aF
-{ + =x 0 (1)

St=0 U UL if x<0

U if x> 0

where UL and UB are the left and right interface states. By
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replacing the initial data with an approximate distribution,

which is constant and uniform over each discrete interval, we

can solve the Riemann problem for each interval and get an

"exact" solution to an "approximate" problem (36:344). This

was first proposed by Godunov and is appropriately named

Godunov's Method. As one might expect, this approach places

the discontinuities at cell interfaces (35:358). Most of the

upstream differencing schemes make use of the solution of the

Riemann problem as a building block. These Riemann solvers

divide the flux difference between neighboring states into

component parts associated with each wave field (11) and has

yielded great success in flow computation.

From a numerical point of view, however, it seems

wasteful to solve exactly the Riemann problem at every

interface. Therefore, some approximate solutions or solvers

are preferred. This analysis uses Roe's method of "...

exploiting the fact that the Riemann solution for any set of

linear conservation laws is easily computed" (36:346). Here

we replace F in Equation (1) with some linear function of U

aU + aU = 0 (2)at ax

where A is the Jacobian matrix - .
au,

This approach is much more efficient. In addition to the

complexity associated with solving the nonlinear Euler

4



equations, it is difficult to accurately resolve the shocks

present at hypersonic speeds. For problems with strong shock

waves or contact discontinuities, Total Variation Diminishing

(TVD) schemes provide high-resolution, shock capturing without

loss of smoothness. In other words, a shock is captured in

only a few discrete nodes without sacrificing a smooth

solution near the discontinuity. More formally, these TVD

schemes comprise a class of conservative, nonoscillatory,

shock capturing schemes (47:6). Additionally, when applied to

a scalar, hyperbolic, conservation law, as (1) oi (2), the

total variation of a solution, TV(U , given by:

2TV(U) la [dx (3)i

cannot increase with time (20:2). The first-order Roe scheme,

which was used in this analysis, satisfies the TVD property

for a scalar, hyperbolic equation.

Roe, who originally developed his algorithm in 1981, used

information from two neighboring states to compute quantities

at some intermediate state (35:357-372), much like simple

straight averaging. Unlike straight averaging, however, Roe-

averaging is mass weighted. Vinokur and Liu recently extended

Roe's work for equilibrium and nonequilibrium flows (24,42).

Chapter 2 provides some details about this averaging.
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B. High-Temperature Effects

Although many robust techniques use TVD schemes and

approximate Riemann solvers, they still assume an ideal gas

and neglect high-temperature effects such as molecular

vibration, dissociation, and ionization. It is well known

that high-temperature effects play an important role at

hypersonic speeds. Particularly, the shock layer decreases in

thickness as temperature behind the shock increases. This is

caused by processes, other than the normal translational and

rotational degrees of freedom in molecules, absorbing energy

behind the shock. The first of these processes to develop, as

temperature increases, is molecular vibration. When

vibrational excitation absorbs energy, the temperature

decreases. The decrease in temperature accompanies a rise in

density, a decrease in y, and ultimately results in a thinner

shock layer (31:2). To illustrate, the following relation

between density and shock standoff for an axisymmetric blunt-

body is provided from Hayes and Probstein (12:160):

A8e= e RB[8 + e + O(e2)] (4)

where e = Pl/p 2. Clearly, as P2 increases, A. decreases. Now

by applying the hypersonic limit to the normal shock relation

for density, e becomes:

lime = -1
M-. Y+1
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This simple expression depends entirely on the value

of y within the shock-layer, and therefore the thermal state

of the flow. The trend in shock standoff distance with

decreasing y can be seen in Figure 1.

0.14

0.12

00

0.1

0.10

0.08

0.06 .l . . . l. . . .l.l., . .l.l.l. . I

1.10 1.20 1.30 1.40 1.50

Figure 1 Theoretical Shock Standoff Distance

Much effort recently has been directed toward modeling

thermal nonequilibrium phenomena. In fact, current schemes

employ various vibration modeling techniques (5,9,27,31,39).

However, this modeling is most often done in conjunction with

chemical reactions. Since vibrational relaxation precedes

dissociation, and the dissociation rate depends significantly

7



on the vibrational state, an accurate analysis of molecular

vibration is required in isolation from the chemistry.

C. Outline of Study

This study has three phases. In the first phase, the

effects of high-temperature thermodynamic states

(equilibrium/nonequilibrium) are investigatcd. Thermal

equilibrium is analyzed by using variable heat capacities.

The equilibrium analysis requires no change to, or expansion

of, the equations of motion. The nonequilibrium analysis is

accomplished by expanding the governing equations to include

a vibrational energy equation. The rate of energy exchange

between translational and vibrational energy modes will be

examined using two different relaxation rate models. Chapter

3 details the theory associated with each model. Computed

results are compared to experimental results for a shock tube.

During the second phase, a Roe scheme was modified for

axisymmetric flow and a general coordinate system. The "Roe-

averaged" state was derived by Roe for a perfect gas (35:357-

372) and is outlined in Chapter 2. This phase established a

perfect gas baseline for comparison throughout the study.

Solutions are computed over the forward portion of a sphere

for Mach numbers ranging from 5 to 8. Theoretical shock

standoff distances, sonic line locations and pressure

distributions are used to validate the algorithm.
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For the third and final phase, contrasts of accuracy and

computational complexity highlight the advantages of each

model. This gives future investigators information about the

tradeoffs associated with vibrational excitation modeling.

D. FindinQs

The first-order Roe scheme accurately predicted inviscid

flow about a sphere. Additionally, large Courant numbers

could be used during the analysis. Converged thermal

nonequilibrium solutions were obtained in less than 1000

iterations.

Vibrational excitation caused shock standoff distances to

decrease by about 10-20 percent. Subsequently, temperatures

within the shock layer and on the body surface differed

substantially from perfect gas calculations. Only the

nonequilibrium analysis predicted a concentrated region of

high temperatures near the shock.

Finally, this study revealed that using a thermal

nonequilibrium model, with a Millikan and White relaxation

rate, provided the best combination of accuracy and

efficiency.

9



II. Mathematical Model

Two different geometries were analyzed in this study, the

1-D shock tube and a simple axisymmetric blunt-body. First,

the shock tube allowed comparisons between computed solutions

and theory to ascertain the performance of the algorithm in

one dimension and the accuracy of each molecular vibration

model. Also, the relaxation phenomena could be analyzed

without the complicating effects of grid transformations and

geometry. The blunt-body problem provided a more

comprehensive check on the accuracy in computing flows around

more physically realistic geometries. As pointed out by

Reference 21, "at hypersonic flight speeds all bodies must be

blunt-nosed to some extent to reduce the heat transfer rate to

manageable proportions."

A. Assumptions

To fully isolate the kinetic behavior, the following

assumptions were made throughout the investigation:

1. Inviscid, nonconducting flow
2. All energy modes decouple completely
3. No electronic effects
4. No dissociation or ionization

The decoupling of energy modes follows trom an analysis of the

Schrodinger equation. This equation is a time-dependent

equation which governs two interacting particles.

Translational energy decouples mathematically by a simple

10



separation of variables in the Schrodinger equation (15).

Since the internucleaic spacing closely matches the classical

equilibrium spacing (15), a further decoupling of rotation and

vibration results. A more detailed discussion of the quantum

mechanics of diatomic molecules can be found in Reference 15.

Although viscous drag and heat transfer cannot be

determined, a comparison of density and temperature within the

shock layer can be made. Ultimately these quantities will

influence the size of gradients within a boundary-layer.

Some further assumptions for equilibrium air were made:

1. Vibrational mode in equilibrium with translation and
rotation, but not necessarily fully excited.

2. The flow can be described by a single density and
temperature.

3. A harmonic oscillator approximation for the molecular
potential energy.

4. A characteristic vibrational temperature, s, of
3154.8 °K.

The term "fully excited" means that the specific internal

energy increases linearly with T (41:133). This concept is

used by anyone assuming a calorically perfect gas. A single

density and temperature assumption simplifies the governing

equations, and reduces the rank of the system to 4. Moreover

a single harmonic oscillator can be used in the vibrational

excitation analysis. A harmonic oscillator potential is a

classical linear spring potential where the spring constant

relates to the vibrational frequencies. In practice, these

frequencies are determined from spectroscopic measurements.
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Harmonic vibration reasonably predicts the vibrational energy

states associated with quantum mechanics (15). Again the

reader is referred to Reference 15 for a more thorough

discussion of quantum and statistical mechanics.

No characteristic vibrational temperature explicitly

exists for air. Therefore, those associated with oxygen and

nitrogen were used to derive a mole-based 0 . These two

constituents were selected since they comprise the primary

diatomic species in air.

A harmonic oscillator potential, and the same

characteristic vibrational temperature, were also used in the

nonequilibrium analysis. Here, however, a different equation

governs the energy associated with molecular vibration. This

equation is provided in the next section.

B. Governing Equations

1-D Shock Tube

The flow in an ideal shock tube is caused by the

instantaneous rupture of a dividing wall, or diaphragm, that

separates two fluids with different static pressures. A

schematic of the flow field is as follows:

12
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Figure 2 Shock Tube Schematic

For this analysis, the region between the shock wave and

contact surface provide the proper physical environment for

nonequilibrium study. Additionally, the shock tube is a

Riemann problem which has an exact solution. The normal shock

relations combine with Riemann invariants to produce the

following expression involving the pressure jump across the

shock:

P 4  P 2  i (Y4 -1) (a1 /a 4) 1 \-2y4 /(Y 4 -1)

Pi P1  (4y2+2y1(y1+l) 0)1/2 (5)

where, 1 -_ 1, a1 represents the speed of sound in frontP,

of the moving shock, and a4 the speed of sound in front of the

expansion fan. The remainder of the exact solution is

outlined in Reference 8.
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For the shock tube, the continuity, momentum, and energy

equations can be written in conservation form as:

au aF
- + - 0 (6)at ax

where

Pu F = P+pu2* .Et1[ (P+Etotai ) U

Sphere

The equations of motion for inviscid, non-conducting,

axisymmetric flow can be written in conservation form as:

au+ + G= S (7)
at ax ay

where

Py PUY ]

p PUY F (P+pu 2 )y
EtotalY (P+Etotai) uy

0[ [ V 1
IP G (P+v2)Y

0 (P+Etotai) VY

Appendix A transforms and develops these equations for a

general coordinate system in the manner described in Reference

38. When discretized, the equations of motion are evaluated

14



at cell centers. Additionally, at cell interfaces, the

metrics were averaged using a finite volume approach (46:4).

Equilibrium analysis does not require any modification of

the equations of motion. For the nonequilibrium analysis,

however, the equations of motion must be expanded to include

a separate equation for the vibrational energy of each

species. Now U in Equation (5) becomes:

ply
P2Y
puy

U PVY (8)
EtotalY
Evibly

The vibrational energy equation written in conservation form

is (5:2).

a [ EvibY] + [ UEviby] vE,,y [QV VY (9)
at + aX + ay

where, QT- - P[e 1 bj,- e bj"i

QT-v is the Landau-Teller form for the rate of energy exchange

between translational and vibrational energy modes, and T is

the relaxation time (19). The Landau-Teller rate equation

assumes that the vibrational relaxation rate varies linearly

with the difference in vibrational energies (32:235). This is

the most widely used form for vibrational relaxation modeling

15



(4,5,9,16,27,33,40,43). Two different relaxation rate models

were used to predict r. Chapter 3 describes the theory behind

each model.

The linearized flux Jacobians used in the equilibrium and

nonequilibrium analysis were obtained with Mathematica, which

is a system for doing symbolic, algebraic and graphic

mathematical computations. Appendix B contains a summary of

the procedure and resulting eigenvalues and eigenvectors.

C. The Roe-averaQed State

When evaluating the dissipation term, some form of

averaging is required at cell interfaces. The present scheme

uses the "Roe-average". This Roe-averaged state was derived

by Roe for a perfect gas, and generalized for both equilibrium

and nonequilibrium flow by Vinokur (24,35,42). The reader is

referred to these references for a complete derivation of the

averaging. To summarize, Roe-averaging consists of,

Ai-1/2 = A (U12/2 ) and Ui 1,2 = U(U1 ,U+ 1 ) , and makes use of the

ratio pi.1/p1 such that:

/2 i 1/2.

p /2u 1 + pu1+1  _ Du, + u(+0
P /2 + /2 D + 1 (1)

where, D = (p1.1/p1 )1/2. Since pressure is directly related to

enthalpy for a calorically perfect gas, typically only

velocity, enthalpy and the speed of sound need to be averaged.

However, for the equilibrium and nonequilibrium analysis

16



pressure no longer directly relates to enthalpy and the

partial derivatives of pressure, defined here as K and X,

also need to be averaged. A detailed discussion of these two

parameters can be found in the next chapter, but the averaging

for these quantities is quite involved and will not be

included into this document. References 24,42 amply cover the

derivations in full detail.

D. Initial and Boundary Conditions

The shock tube problem only requires that the initial

solution have a high pressure side and low pressure side. It

does not require any boundary conditions unless reflected

shocks and waves are studied.

For the blunt-body problem, an initial condition was

derived from an empirical shock location and shape, oblique

shock relations, modified Newtonian theory, the equation of

state and a constant enthalpy condition (1:190). The shock

standoff distance and shock shape can be very closely

approximated by the method in Reference 2. Oblique shock

relations then determine values at the shock. Along the body,

the initial condition assumes a Newtonian pressure

distribution and linear velocity distribution. Throughout the

field, velocities and pressures are interpolated between the

body and shock. Finally, the adiabatic, constant enthalpy

relation and equation of state determine temperature and

density, respectively.
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Boundary conditions which were simple, but would not

degrade the accuracy of the solution were chosen for this

study. For inviscid flow, tangency of velocity needs to be

satisfied at the body surface. Reflection on density and

total energy complete the surface boundary condition. Next,

a supersonic inflow condition, and "no-change" outflow

condition were imposed. Finally, at the symmetry
au

line v and a-0. Several other boundary conditions were

tried while trying to improve the solution:

BODY SYMMETRY LINE

1. Tangency and 1. Zeroing the fLuxes

Normat Momentum (34:14) 2. Limiting form of the

Equations of Motion(39:4)

Chapter 4 summarizes results from the different conditions.
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III. Vibrational Excitation Theory

Vibrational excitation can be modeled in three ways. We

can ignore it, as with the perfect gas assumptions. We can

also place it in equilibrium with the other energy modes, or

we can treat it as a process that occurs at a finite rate. As

described by Lambert (18:13):

In a sudden compression the whole energy goes
initially to increase Ttr, and this is followed
by relaxation to T-R and T-V energy transfer
until equilibrium between the three modes is
re-established. Such rapid compressions are
produced by ultrasonic sound or by the passage
of shock-fronts.

A. Equilibrium Vibrational Energy

The equilibrium model is based solely on statistical and

quantum mechanics, which predicts that a partition function

can be related to specific internal energy by the relation

(41:128):

evib = RT 2 a(ln Qvib) (ii.
aT

where Qvib is the Partition Function, and

1Qvib = 1 - exp(-0O/ 71

Recall that Ov is the characteristic vibrational temperature

and is constant. Additionally, since internal energy defines
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temperature, the above relation for the vibrational energy,

combined with the relations for fully excited translational

and rotational energy, provide enough information to compute

temperature. 3
eS -= -RT (12)

2

erot RT

Only for temperatures which exceed those where dissociation

begins will the vibrational energy mode reach a fully-excited

state.

As pointed out earlier, the equilibrium model required no

expansion or modification of the governing equations. The

increase in complexity finds its way into the problem through

the linearization of the flux terms. For these terms, the

partial derivatives of pressure, with respect to energy and

density, were rederived. Utilizing the chain rule:

p= p T pR- (13)

where = pe. Now from (11-12),

e = RT + OR(14)
2 exp (O/T) - 1

20



aT -1

p exp (0,/T) pR (15)
5pR + -(T
2 (expOv/T - 1)2

1

exp(Ov/T) V (16)

2 (expOv/T - 1)2

Using the definition of pressure from Reference 42, leads to

a convenient form for the second partial derivative of

pressure:

pp = XP+ 6

-aplo

where X - "

Therefore,

X = RT- -! (17)
p

It is very interesting to note that (16) reduces to
=2

K 5 or (Y-1) for low temperatures. Then with 6 = pCvT
I 5

and K = y-1, X from (17) vanishes. These are exactly the

perfect gas relations where p = (y-1)pe.
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B. Noneauilibrium Relaxation

Equilibrium for translation is attained in only a few

collisions since there is free interchange of translational

energy at every collision. Likewise, for temperatures in

excess of a few hundred degrees, rotational equilibrium is

attained in less than ten collisions (18:25). Molecular

vibration, however, requires significantly more collisions and

time to reattain equilibrium. The present nonequilibrium

analysis accounts for this energy relaxation with a two-

temperature model (30:488). One temperature, T, specifies

the translational/rotational energy, and the other

temperature, TVib, defines the nonequilibrated vibrational

energy. This analysis used the Landau-Teller form for the

energy exchange between modes (19:34). This appears as a

source term in the vibrational energy equation (see Chapter

2), and is a function of the relaxation time, T. To

approximate the relaxation time, both the Millikan and White

model and the Park model were tested. These models are both

emperical, since a theoretical model has not been developed to

date.

Millikan and White Model

Millikan and White developed an empirical model to

compute relaxation times for diatomic molecules(28:l). They

found that ln(zp) is linearly related to T-11 3 through the
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following relation:
1 -1/3 .I14

IsCr - exp[A. (T -sr )18.42] (18)

where, A -3 1/2 4Aar 1. 16x.1 3 " / V 84/3

sr =  (Ms + Mr)

Here Tar is the relaxation time for molecule s colliding with

species r, and p. is the partial pressure of the colliding

particles (in atm). As Mach number increases, both p and T

within the shock layer increase. This forces relaxation times

to decrease.

Park Model

Park developed another model to improve relaxation rates at

very high temperatures (31:4). The rate of change of

vibrational energy in the molecule s, by collisions with

species r, is given by:

([e=bI r -+ ee b. I Th-Tvib ( (19)

(T V .Tsr +e L T~h -Tvlb]

where
w e etc S =3. 5 expI ThI

con [5000]

C 8 (kT) a lXl0
1 7 [50,000]2
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The number density of the mixture is n. k is the Boltzsmann

constant; g defines the average mass and TSh denotes the

temperature behind the shock. c is the average molecular

speed and Y is the limiting cross-section. Park modified the

classical Landau-Teller model to account for the collision

time, t.. Unfortunately, he did not document the development

of the last term, other than to state that it brought

"calculated values into closer agreement with experimentally-

determined values" (31:4). The vibrational energy, evib, is

still determined using a harmonic oscillator for the partition

function. The dependence, however, is now on the

nonequilibrated, vibrational temperature, Ti b

R O(
eVIb" = exp(Ovo/Tib) - 1 (20)

Although this model yielded results closer to experimental

values in Reference 31, no information on its application at

moderate Mach numbers could be found.
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IV. HiQh-Temperature, Shock Tube Results

A. Perfect Gas

The upwind scheme with Roe averaging was very robust and

produced qualitatively accurate solutions. Figures 3-6

demonstrate the accuracy of the algorithm developed. Here the

distributions for density, pressure, velocity, and

temperature, are plotted against the exact, theoretical

solution.
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E 75000

C 50000

25000
Theo ry
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-1 - -6 -4 -2 -0 2 4 6 8 10
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Figure 3 Pressure Profiles for Perfect Gas Model Applied

to Shock Tube

25



2000-

1750

1500
Theory

0 a 0 0 0 Perfect Gas Model

1250

E 1000

C 750-

0500-

250

0-
-10 -8 -6 -4 2 0 2 4 6 10

x (meters)

Figure 4 Velocity Profiles for Perfect Gas Model Applied
to Shock Tube
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Figure 5 Density Profiles for Perfect Gas Model Applied
to Shock Tube
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Figure 6 Temperature Profiles for Perfect Gas Mod.l
Applied to Shock Tube

The scheme predicted with reasonable accuracy all three flow

phenomena (shock, expansion, and contact discontinuity).

Furthermore, the scheme smoothly captured the moving shock in

only three or four points, which is quite excellent for the

strength of the shocks involved. First-order accuracy,

however, is apparent from the errors in the expansion fan and

contact discontinuity.

An interesting, nonphysical solution appeared in the

shock tube numerical simulations. Figure 7 shows a

discontinuity within the expansion fan that does not arise in

theory or experiment.
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Figure 7 Nonphysical Discontinuity in Shock Tube

This erroneous phenomenon was eliminated by satisfying the

"entropy condition for shocks" (10:297-305). The entropy

condition is needed to pick out the physically relevant

solution, because solutions of hyperbolic conservation laws

are not uniquely determined by their initial values (10:297).

A small constant parameter, as proposed by Reference 47, was

incorporated into the dissipation term and proved sufficient

to prevent nonphysical solutions.
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B. Vibrational Effects

Figures 8-12 show the shock tube computations using each

vibrational model. The pressure is only nominally effected by

vibrational excitation, and changed by about two percent from

theoretical predictions (Figure 8).
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Figure 8 Pressure Profile Comparison for Shock Tube

Temperature and density, however, deviated significantly (10-

15 percent) from perfect gas theory (Figures 10 and 11).
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Figure 12 clearly shows the nonequilibrium relaxation

phenomena. The translational/rotational temperature reaches

a peak value directly behind the shock, then quickly falls as

molecular vibration begins to absorb energy. Equilibrium

exists where T and Tvib are equivalent.
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Figure 12 Vibrational Relaxation in Shock Tube
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Density Ratio Calculations

Both qualitative and quantitative comparisons were made

with experimental density information. The qualitative

comparisons determined the ability of each model to predict

the flow features in the shock tube. The quantitative

comparison provided a detailed measure of the accuracy.

To make a qualitative assessment of the equilibrium and

nonequilibrium models, density interferograms were created

from the computed densities at two different conditions.

These were then compared to experimental interferograms. The

first comparison was for a shock moving at a low Mach number

(M=2). For this case minimal molecular vibration should take

place. The second comparison was for a shock moving at a much

higher Mach number (M=6). Here molecular vibration is

significant. The interferogram is an interference measurement

which shows jumps and gradients in the flow field. Gradients

appear as curvature in the interference pattern.

Figure 13 (a,b,c) shows the interferograms for M=2. Both

the equilibrium and nonequilibrium models match the experiment

and predict a nearly constant density behind the shock.

Figure 14 (a,b,c) shows the interferograms for M=6. Only the

nonequilibrium model predicts the relaxation phenomenon shown

in the experimental case.
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*Figure 13a Experimental Density Interferogram
(Shock Tube, M=2)

Figure 13b Nonequilibrium Density Interferogram
* (Shock Tube, M=2)

Figure 13c Equilibrium Density Interferogram
(Shock Tube, M=2)
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*Figure 14a Experimental Density Interferogram
(Shock Tube, M=6)

Figure 14b Nonequilibrium. Density Interferogram
* (Shock Tube, M=6)

Figure 14c Equilibrium Density Interferogram
(Shock Tube, M=6)
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Next more quantitative comparisons were made to fully

assess each models validity. To provide a common point of

comparison, the densities were calculated after the flow re-

equilibrates in the experimental and nonequilibrium cases.

The ratios across a normal shock, for both nonequilibrium

(relaxing) and equilibrium models, matched the experimental

results (3:75-79) for nondissociating air within two percent.

Table I summarizes results for a shock wave moving at M=5.75.

Equilibrium may match the experimental results better due to

experimental error.

Model P2 P2

Theory 7.37 5.21 38.41
Perfect Gas 7.36 5.20 38.36
Equilibrium 7.00 5.80 40.55
Nonequilibrium 6.89 5.84 40.03
Experiment 5.75

Table I Calculations across a Moving Shock (M = 5.75).

Experimental density ratios for oxygen and nitrogen are

plotted in Figure 15 with the results from the nonequilibrium

scheme using the Millikan and White model. Clearly, the

computations for air follow the experimental trend.

Additionally the computed ratios for air fall between oxygen

and nitrogen, as one would expect. Recall that the
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characteristic vibrational temperature, 0, used for air

(3155 °K ) was a mole-based average of Ov for oxygen(227 0 K )

and Ov for nitrogen (3390 °K ).
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Figure 15 Density Ratios Across a Moving Shock

Relaxation Times

The relaxation time was computed by observing a

stationary point in the shock tube. After the numerical shock

passed over this point, time was measured until the flow

reattained equilibrium. Figure 16 shows a comparison of
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relaxation times for pure nitrogen and pure oxygen, normalized

to 1 atm. Relaxation times compared favorably for the range

of moderate temperatures (Mach numbers) tested. Although

exact agreement was not obtained, quantities computed with the

Millikan and White model fall close to the scatter of

experimental data.
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+000 A A
+ 0
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005 0.07 0.09 0.11
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Figure 16 Oxygen and Nitrogen Relaxation Times normalized
to 1 atm.

After agreement for pure species was confirmed, mole-

averaged constants were employed in the calculations for air

as a single, composite species. Figure 17 shows a comparison
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of relaxation times between experiment and the nonequilibrium

scheme for air with the Millikan and White model. As can be

seen, at temperatures below 2500 degrees K, the scheme

predicts relaxation rates between pure oxygen and pure

nitrogen; much closer to nitrogen. This is consistent with

the mole-averaged OV used. At higher temperatures, the

relaxation rates are nearly identical to those of nitrogen.
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Figure 17 Relaxation Times for Air, Normalized to 1 atm.

Two possible explanations for the models inaccuracy at

higher temperatures are a slightly high characteristic

vibrational temperature or a failure to account for the

dissociative behavior of oxygen at these temperatures. A
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characteristic vibrational temperature for air does not

explicitly exist. The mole-averaged quantity, derived for

this analysis, does not take into account the effectiveness of

different collision types, like 02-02 and 02-N2. This

significantly impacts relaxation rate prediction as pointed

out by Reference 2. Furthermore, oxygen will begin to

dissociate above 2300 degrees K.

Park Model Versus Millikan and White Model

Only minor differences between the two models could be

noted for the temperature range investigated. Table II gives

a comparison of results using the Park model and the Millikan

and White model.

Temperature rark Model Mil. & White Model
(deg K) (microsec) (microsec)

3550 21.4 16.4
3350 27.3 21.3
3200 34.1 26.1
3050 40.8 32.2
2950 47.4 37.8
2850 53.9 44.1
2750 59.0 51.5
2600 69.4 65.2
2400 84.3 80.8
2200 186.7 186.5
2050 257.8 257.7
1850 577.0 577.0
1800 668.2 668.2

Table II Relaxation Times for Two-Temperature Models.

As temperature increased, the Park model calculated longer

relaxation times than the Millikan and White Model. This is
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consistent with the design of this model. As stated by

Park(32:234-235):

The modification accounts for two phenomena
that are unique to the high-temperature
e.vironment, that is, a limiting value of the
cross section and the diffusive nature of
vibrational relaxation. The first phenomenon
arises from the fact that the correlation
formula of Millikan and White implies an
unrealistically large cross section for
vibrational relaxation at high temperatures.
The second correction accounts for the fact
that, at high temperatures, vibrational
relaxation obeys a diffusion equation with
respect to the vibrational energy levels,
rather than a Landau-Teller-type rate
equation. As a result, the vibrational
relaxation rate does not vary linearly with
the difference in vibrational energies.

The diverging trend, as temperature increases, is visible in
Figure 18.
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Figure 18 Comparison of Relaxation Times for Two
Temperature Models.
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No other computational results for the temperature range

investigated could be found to confirm these results. However

Park developed his model for dissociating and ionizing flows

where the mean temperature exceeds 10,000 °K. These results

indicate that the Millikan and White model is more accurate at

temperatures below 4000 OK. Therefore, for the remainder of

this study, only the Millikan and White Model was used.
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V. Blunt-Body Solutions for a Perfect Gas

Solutions of the Euler equations are presented in this

section for perfect gas flows about the forward portion of a

sphere. Shock standoff distances agreed with experimental

results, and sonic line locations agreed with theory. The

first-order Roe scheme was very robust to both starting

condition and time step while calculating blunt-body

solutions. Unfortunately, the algorithm was sensitive to the

sphere's geometric singularity and tended to produce

oscillations and other nonphysical solutions in the vicinity

of the stagnation point. Additionally, some sensitivity to

grid refinement was noted.

A. Solution Flow Structure

Qualitatively, the scheme predicted shock standoff

distance, sonic line location, and surface pressure

distribution quite well. Figure 19 shows a comparison between

experimental and computed shock standoff distances. Tabulated

shock standoff distances were taken from References 2,17 and

29. Computed values differed from experiment by about ten

percent. This is primarily due to the absence of a boundary-

layer in this analysis. A boundary-layer would essentially

increase the effective body radius and produce larger shock

standoff distances. The trend with increasing Mach number is

nicely predicted.
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Figure 19 Computed versus Experimental Shock Standoff
Distance (Nonequilibrium Model).

The blunt-body calculation also produced accurate sonic

line information. In axisymmetric flow, the sonic line should

be obtuse to the body at higher Mach numbers (1:184). Figure

20 shows the computed sonic line for a sphere at a freestream

Mach number of 7. Additionally the sonic line should be acute

for two-dimensional flow. Figure 21 shows the computed sonic

line for a cylinder also at Mach 7. These figures indicate

that the algorithm predicts the proper physical aspects of the

sonic line behavior.
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Figure 21 Sonic Line Location for a Cylinder at M=7.0.
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Experimental surface pressure coefficients were extracted

from graphical data in Reference 29. The experimental data is

plotted in Figure 22 with a modified Newtonian distribution.
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Figure 22 Experimental Pressure Coefficients Around the
Forward Portion of Hemisphere Cylinder at M=5.7.

Pressure coefficients from the perfect gas code under

predicted experimental data by about five percent. Although

the Roe scheme does no better than modified Newtonian, the

distribution around the sphere is well predicted (Figure 23),

especially at the shoulder. The errors are primarily induced

by the algorithm's sensitivity near the symmetry line. This

shortcoming is discussed in the next section.
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Figure 23 Pressure Coefficients from Perfect Gas
Calculations.

B. Numerical Issues

Sensitivity Near Symmetry Line

An oscillation near the symmetry line developed in the

solution of the axisymmetric problem. The two-dimensional

problem did not encounter these oscillations, but similar

behavior was observed by Shang and Joshula (39:6). Figure 24

shows Mach contours for flow over a sphere at Mach 5.7; Figure

25 shows similar Mach contours for flow over a cylinder also

at Mach 5.7. The solution oscillates, in the axisymmetric

case, for the first few degrees from the stagnation line.
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Figure 26 shows the computed pressure coefficients around a

cylinder. Again no oscillations appeared in the 2-D

computations.
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Figure 26 Surface Pressure Coefficients for a Cylinder
at M=5.7.

Studies have shown that proper treatment of numerical

boundary conditions has a major impact on the stability of a

scheme (47:105). Unfortunately, several variations in the

boundary conditions did not improve or e.-.minate the

oscillatory behavior.
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The boundary conditions attempted include:

1. Tangency and reflection at the body
2. Tangency and normal momentum at the body
3. Zeroing the fluxes at the symmetry line
4. vanishing normal derivatives of conserved variables

at the symmetry line
5. Utilizing the limiting form for the equations of

motion at the symmetry line.

Several other techniques fared no better at improving the

solution. These included:

1. Artificial, explicit dissipation near the symmetry
line

2. Incorporating an entropy parameter to satisfy the
"entropy condition"

Recent work with second-order Total Variation Diminishing

(TVD) schcme3 has shown that limiters and more sophisticated

dissipation functions eliminate the oscillatory behavior

(47:106). It is important to note that the oscillations were

confined to the first five azimuthal nodes, and not to the

first few degrees. As the grid was refined, the region

effected by the spurious behavior shrank. Therefore, with a

refined grid, the integrated affect would be small.

Nonphysical Solutions

At the highest Mach numbers tested, a nonphysical

recirculation developed in the stagnation region at the shock.

This phenomenon is shown in Figure 27. As pointed out by

Reference 39, two of the four eigenvalues of the system of

equations are zero, therefore initial error will accumulate in

the iterative process. This reference characterized the
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result as an "accentuated bulge in the shock wave near the

axis of symmetry" (39:6). They propose that updating the

initial condition may eliminate the error. Attempts to update

conditions within the stagnation region did not yield

promising results in this study. In theory, the error might

be propagated away from this region by using mesh sequencing

or limiters in the dissipation formulation (34:6-12).
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Figure 27 Nonphysical Recirculation Phenomenon in
Stagnation Region.
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Grid Sensitivity

The recirculation phenomenon and the grid were highly

coupled. As the grid was refined, recirculation occurred at

lower Mach numbers. Several permutations in the grid proved

unfruitful, including grids which stride the symmetry line and

grids which fall on the symmetry line. By maintaining a

sufficiently large azimuthal grid spacing near the symmetry

line, and a sufficiently largtz Courant number, the phenomenon

could be avoided. Cell aspect ratios of about three to one

worked best. Courant numbers between 0.7 and 0.9 provided the

necessary dissipation near the shock.

While maintaining the optimal cell aspect ratios, the

grid was refined until the shock standoff distance converged.

Convergence was determined from the percentage change in shock

standoff, and satisfied when this change fell below one

percent. A plot of shock standoff distance versus radial node

spacing is provided in Figure 28. A coarser grid seems to

underpredict the shock layer thickness.
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VI. Equilibrium/Noneuilibrium Blunt-Body Solutions

After validating the scheme for the perfect gas model

with theory and experimental data, several comparisons to this

baseline approach proved illuminating. First, molecular

vibration significantly effected shock standoff distance.

Second, an interesting low density, high-temperature zone

developed immediately behind the shock. Finally, the

equilibrium model proved far less robust than hoped.

A. Shock Standoff Distances

For both the equilibrium and nonequilibrium cases,

density increased and shock standoff distance decreased.

Density contours for perfect gas and equilibrium airflows over

the sphere are presented in Figure 29. A noticeable increase

in density and decrease in shock standoff distance can be

observed for the equilibrium case. Figure 30 shows a similar

temperature contour comparison between equilibrium and

nonequilibrium air. As expected, the equilibrium model

underpredicts the shock standoff distance. The vibrational

relaxation phenomenon is clearly visible in Figure 30. An

isolated region of high temperatures forms directly downstream

of the shock. As the vibrational states of the molecules

become excited and absorb energy, the temperature must

decrease. The shape of computed temperature contours, for the
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nonequilibrium model, show that temperature is in fact

decreasing downstream of the shock.
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number increases, molecular excitation increases, and y

decreases. The nonequilibrium calculations produced changes

consistent with this theory for both planar and axisymmetric

flow. Figures 31 and 32 show Mach contours around a cylinder

(planar flow) for freestream Mach numbers of 5 and 7

respectively. Note the considerably larger decrease in shock

layer thickness for the higher Mach number.
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Figure 31 Mach Contours for a Cylinder at M=5.0
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Figure 32 Mach Contours for a Cylinder at Mach 7.0.

The axisymmetric analysis produced similar results. Here, for

a freestream Mach number of 6, A, decreased by about 7

percent. At a freestream Mach number of 8, Ao decreased by

over 19 percent. If gamma had decreased the same amount for

both Mach numbers, the decrease in Ao would also have been

the same. Table III summarizes shock standoff results for a

Mach number of 5.7.
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Model AO

Experiment 0.170 Rb
Perfect Gas 0.148 Rb
Nonequilibrium 0.140 Rb
Equilibrium 0.138 Rb

Table III Shock Standoff Distances for Hemisphere Cylinder
at M=5.7.

As described earlier, the inviscid scheme underpredicts

the shock layer thickness due to the absence of a boundary-

layer. Note, however, shock location followed the proper

trend as the various models were incorporated. Two physical

aspects of fluid motion support this trend. First molecular

vibration absorbs energy; therefore, temperature must

decrease. Since the pressure is only weakly coupled to the

translational energy mode, this molecular vibration will

primarily require the densities to be lower. Second,

conservation of mass must be maintained. Lower densities

require more volume to satisfy consistent mass flow

constraints. Both of these principles effect both thermal

equilibrium and thermal nonequilibrium, but the nonequilibrium

case requires a finite time and distance to accomplish the

energy transfer, and will thus have thicker shock layers.
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B. Relaxation in Stagnation ReQion

Nonequilibrium calculations produced striking temperature

and density gradients in the stagnation region, with an

isolated "hot spot" near the shock. Figure 33 shows the

region of highest temperature located next to the shock. This

contrasts with perfect gas and equilibrium calculations where

the stagnation point temperature is highest.
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Figure 34 shows the translational/rotational temperature

plotted against the vibrational temperature along the

stagnation line. The flow never quite reattains equilibrium.
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Figure 34 Temperatures Along the Stagnation Line.

The validity of the two-temperature model is questionable

at moderate Mach numbers, because the relaxation rates

discussed in Chapter 4 differed significantly for comparable

temperature ranges. Figure 35 shows the stagnation line

vibrational temperatures for pure oxygen and pure nitrogen.

The differences throughout the shock layer are quite large.
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Figure 35 Temperature Comparison within the Shock Layer
(Oxygen -vs- Nitrogen).

Surface temperature distributions, on the other hand, did

not differ significantly. In fact, the vibrational modeling

had little impact on the trend in temperature distribution

around the sphere. Figure 36 shows the translational

temperature around the sphere for all three gas models:

perfect gas, equilibrium, and nonequilibrium. Discrepancies

between the magnitudes are apparent, but clearly the geometry

dominates the trend.

63



-~ 1250

150 - Noleq~iliblio m Moel
Equilibrium Model
PerfeCt Gas Model

0 30 108

~2(deg)

Figure 36 Surface Temperature Distributions for M=5.7.

C. Molecular Vibration Model Tradeoffs

The equilibrium model was nearly as complex as both two-

temperature relaxing models. The equilibrium model required

more CPU time for two reasons. First, a Newton iteration

procedure was employed to determine the temperature at each

node point. Second, several more parameters had to be "Roe-

averaged" to determine the eigenvalues and eigenvectors of the

linearized flux Jacobians. Computation times for the code on
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a Cray-YMP are summarized in Table IV. No effort was made to

fully vectorize the code, so some increase in efficiency could

be realized.

Model CPU Time Required

Perfect Gas 1.75 x 10-6 sec/node pt/time step

Equilibrium 9.00 x 10-6 sec/node pt/time step

Nonequilibrium 12.30 x 10.6 sec/node pt/time step

Table IV CPU Requirements for each Vibrational Model

Equilibrium and nonequilibrium vibrational modeling

produced similar surface temperature distributions. At the

lowest Mach numbers tested, the differences were less than 15

percent. At Mach 8, the difference shrunk to only 3 percent.

Only nonequilibrium modeling properly captured the radial

temperature gradients within the shock layer. This

significantly effected proper resolution of temperatures

within the stagnation region, especially at or near the shock.
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VII. Conclusions and Recommendations

A first-order Roe scheme was developed for inviscid

axisymmetric flows using three different gas models: perfect

gas, equilibrium air, and nonequilibrium air. The Roe scheme

obtained a converged steady-state solution in about 3000

iterations using an 81 x 41 grid, and a Courant number of

0.9. On the Cray-YMP this took only about 2 minutes.

Molecular vibration modeling did not appreciably impact

convergence rate. This robustness is impressive in spite of

the complications associated with the axisymmetric equations

of motion. The scheme's utility for producing reasonable

preliminary solutions is certainly supported by the results of

the present effort.

The perfect gas model predicts the proper qualitative

trend in shock standoff distance, for inviscid flow over a

sphere. By incorporating an equilibrium vibration model, both

shock standoff distance and temperature decrease by about 10-

20 percent.

Changing thermal states near the shock were determined

using nonequilibrium modeling. By calculating these rapidly

changing thermal states, the nonequilibrium model predicted

the highest temperature, and lowest density near the shock.
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A. Solution Sensitivity to Axisymmetric Equations of Motion

Since the 2-D investigation did not encounter any

spurious oscillations, this anomaly is unique to the

axisymmetric problem. For the axisymmetric configuration

there is a geometric singularity and the Jacobian vanishes

along the axis of symmetry. The oscillatory behavior did not

affect the final steady-state solution. In fact, the noise

near the symmetry line could be filtered out using post-

processing. Therefore the behavior was not considered to be

a serious determinant to this analysis.

Nonphysical recirculations were avoided by constructing

a grid with azimuthal spacing obtained through trial and

error. No concrete justification for this can be offered.

More investigation into this phenomenon is warranted.

B. Accuracy Versus Computational Complexity

The Millikan and White model accurately predicts

relaxation rates for the flight regime analyzed. The Park

model has several coefficients which could be modified to

bring it into closer agreement with the experimental data used

in this study. Due to its simplicity the Millikan and White

model is preferred. However, if the models are used over a

greater variation of Mach numbers, the Park model may prove

more accurate at the higher Mach numbers (5:7,32:234).
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Since a flow in thermal nonequilibrium develops a "hot

spot" just downstream of the shock, for moderate Mach numbers,

equilibrium may not be reached in the stagnation region.

Moreover, moderate Mach numbers pose a unique problem for the

"two-temperature" model. At lower temperatures (i.e. lower

Mach numbers), the vibrational temperatures for oxygen and

nitrogen at the body surface are significantly different. At

higher temperatures (i.e. higher Mach numbers), equilibrium is

attained at the body surface, but magnitudes for nitrogen and

oxygen differed by 15 percent within the relaxation zone.

These two factors may impact heat transfer calculations and

calculations involving chemical reactions at the onset of

dissociation.

Equilibrium calculations neglect the relaxation of

temperature and density within the shock layer. However, .ear

the body surface equilibrium and nonequilibrium calculations

differed by only about 3-5 percent above Mach 6. Therefore,

in the absence of dissociation, equilibrium can be used to

accurately predict inviscid surface conditions.

Unfortunately, the increase in CPU time required to

compute an equilibrium solution is intricately linked with the

Roe averaging. This makes it less desirable than the

nonequilibrium solution.
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C. Recommendations for Follow-on Study

1. Extension of the thermal nonequilibrium analysis to

incorporate a second-order-accurate TVD scheme is an

appropriate next step. Here the impact of sophisticated

dissipation functions can be assessed.

2. Further analysis of the grid/boundary condition

interaction may shed further light on the development of

spurious behavior near the symmetry line. Particularly, the

limiting form of the equations of motion should be more fully

analyzed.

3. More detailed analysis using a multi-temperature

model with the Roe scheme would help determine if the two-

temperature model is sufficient at Mach numbers between 5-10.

The multi-temperature model is outlined in Reference 5, and

carried out for Mach 25-28 flows using a Gauss-Seidel line

relaxation technique.

4. Extension of first-order, inviscid analysis to first-

order viscous analysis. Spurious oscillations may go away by

introducing "natural" dissipation into the problem.

Additionally, the presence of a boundary-layer should produce

more accurate shock standoff distances. Finally, computed

heat transfer rates can be compared to experiment to further

assess the impact of each molecular vibration model.
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Appendix A: Derivations of Governing Equations

Perfect Gas/Eauilibrium

The equations of motion for 2-D or axisymmetric flow can

be written in conservation form as:

Ut + Ex + Fy = S

where,

LEy7" (P+Euy~ lp UY E (p+pU 2 )ya

0y -(P+Et) vY a

For 2-D flow a is 0, and for axisymmetric flow a is 1. To

apply these equations in a general coordinate system

or and i , we use the chain-rule:

Ut + 1 + qxl~E + + i%,F, = S

*x, ty, x, y are the familiar metrics of the transformation.

By multiplying through by the Jacobian of the inverse

transformation, j , the equation can be recast into the

"strong conservation form."
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First,

jt+ j(.,t+ %q+ YI+ qyq)

Assuming that the grid is fixed in time, jut (JU)m Also,

J ,E4 [JT-%E] -E

LZYFt1  [J1 YF, t- (Y

* Note that,

+ 01 (jyqJ} +'

A)z+ =jl), ~ - Yz11  0

In a similar fashion,

*AY + 01Y). 0

Thus,

(jU) + rTZ]+ [jtlhE]I + [EF]4+ fY] = jS

(jU)~ + [(~,E + tF)] + [7(ThE + TIF) ],, = jS

Finally, if we let ji = ijl and,

E (t'E + YF) F' (iE + YIF)

71



Now the governing equations can be written in the form

suggested by Viviand and Vinokur:

A; E + F,= 0

There are two drawbacks to this form. One drawback of this

form is that new Jacobian matrices (and consequently

R and A ) must be developed, since 0 is now the vector of

dependent variables and not U. The more general Jacobian

matrices are given by:

- and B ---

Since E and F are most conveniently expressed in terms of the

elements of U , A and Bf are also detennined by using the

chain rule:

auaf 1
aau j E(xu~~)

X=XA + YB

Similarly

The second drawback is that a grid with varying metrics will

not conserve the freestream. Consider E,F constant. This

implies ff and P are constant, if and only if y,, Xn, yE, x4 are

constant.
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The problem can be avoided by simply writing the

governing equations in the following form (38:2):

9t+(y,1Et - x,,F,) + (x(F,, - ytEq) = S

The solution can be obtained by two successive sweeps, one in

the direction the other in the n direction. In discretized

form, the equation for the q -sweep becomes:

= -n n n n -'iin 1n

Uj = U (E i 1 - El-l) - x, (F i h - 2ii) + -i("i+/2,j - mi- 12 ,j)

where the dissipation term is added for stability. For the

Roe schere the dissipation term is defined as:

A11/ 2, j = RX IASI Ril (jin,j- j2)

and n
and 112,, = RX IAX i (1 7ij j>~ )

The variables used in Rx, IAXI, Ril are found by using the Roe-

average at the interfaces (i+1/2,j) and (i-1/2,j). The

matrix, IAAI, is a diagonal matrix of eigenvalues. The

derivation of the linearized matrices is performed in Appendix

B. Since the vector of unknowns is still 17 , the definition

of A remains the same as discussed above for the strong

conservation form.
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Nonequilibrium

Here an equation is included for each species which is

not in equilibrium (9:7). The conservation form is again

written as:

U + E, + Fy = S

However, now for a system with say two species, diatomic

oxygen and nitrogen for example,

*PN 2Y PN Uy

pN2y p0 2uy

P UYa (P+Pu 2 ) Y"

U = pvyc E = PUvya

Etyc (P+E t) Uy

Ev Ev UYE

Ev02 EV02uYa

0 PN2 T'
0 Po02VY "

0 puvy"

S = F =(p+V
2 )ya

0 (P+Et) vYa

wA1 a E~ V-2 y

WV02 E vy

where Ev is the vibrational energy of species s, and Wv, is

the Landau-Teller form for the energy exchange between
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translational and vibrational energy modes, also for species

s. The expansion for a general coordinate system then

precedes as above.

The derivation of the linearized matrices used in the

Roe-averaged dissipation term, followed the work of Liu and

Vinokur (25). Details are again provided in Appendix B.
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Appendix B: Derivation of Flux Jacobians, Eigenvalues, and
EiQenvectors

To study high-temperature effects, Roe's approximate

Riemann solver was selected because it is both simple and

robust. The "Roe-averaged" state was derived by Roe for a

perfect gas (35), and generalized for both equilibrium and

nonequilibrium flow by Vinokur and Liu (24,42).

Perfect Gas\Ecuilibrium

Consistent with the derivation by Liu and Vinokur the

flux Jacobians for perfect gas or equilibrium analysis are as

follows:

0 1 0 0

K 1-u 2  (2-K)u -Kv K
aE
au U 0

(K 1-H)u H-Ku 2 -xuv (I+K)u

o 0 1

B aF V U

B -2
9 Ki-v 2  -KU (2-x) v K

(K 1-H)u -KUV H-KU 2 (1+K)V
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where 
K (u2+v2) + X

2

* x = ap

ap
&= pe

For perfect gas flows, K is equal to y-1 and is constant.

Also for perfect gas flows X is exactly zero.

I used Mathematica to derive the eigenvectors for a

general coordinate system by letting X = ,A + yB :

I 1 1 0

u-klc u u+klc k2

Rx V-K 2c v v+k 2 c ki

(Hk 1uc-k 2vc) (X + u2+v 2 ) (H+kluc+k2vc) (klv-k2u)K 2

(li _+hY (b2U--iJ (b2 _±_ (b)

1 -b I  b2u b 2 v -b2

RA

bi -'-U -- -v -b 2 u+-1 -b\V/k

k 2u-k v -k2  k 0
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where
*2

b = b 2 [( +V2)+

2( 2

k2= _ _

1

The eigenvalues for the above system are

Uc-Ktc 0 0 0

0 U, 0 0

Ax
0 0 Uc+Kic 0

*0 0 0 UC
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Noneauilibrium

For nonequilibrium flow with two species the system has

a rank of seven. Again, the equation was transformed to a

general coordinate system then the eigenvalues and

eigenvectors of the flux Jacobians were determined with

Mathematica. The procedure, while involving significant

analytical complexity, is straight forward. Extension for

mixtures with additional species is also straight forward.

These matrices are provided as follows:

u7 0 0 0 0 0 0

U Uc  0 0 0 0 0

o 0 0 0 0

o 0 UC 0 0 0 0

A- 0 0 0 U, 0 0 0

o 0 0 0 U, 0 0

o 0 0 0 0 Uc-Ktc 0

0 0 0 0 0 0 Uc+Ktc
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0 0 0 1 0 C, C1

0 0 0 0 1 C 2  C2

-k 2  0 0 u u u-,kc u +kl c

0Rk, 0 0 v v v-K2 C V+k2 C

(Jc~v-k~u) 1 1 22- 2 ) (-A-+ U2v) (H-kuc-k2 vc) (H+kuc+k2 vc)
x 2 K 2

0 0 1 0 0 elc1  e1c1

00 1 0 0 0 e2 C2  e2 C2

k~u-k~v ku-k~v -kc2  k,1  0 0 0

S-0 2 c2b1  -e2 c~b 2  U (e 2 CAb) v Ce. c2b1,) -ecb, .92C2b3  1+e2c2b3

6,bl-alclb. u (elcb) v(elclb3 ) -e~c,.b3 1+e~cb 3  elclb,

1t;bljlbu(c~b) v(c~b) -c~b c~b, c1b3

=i -cb 1  1 -C 2 b2  U (CAb) V(C2b,) -cb 3  CAb CAb

(~~~b kbu kb 2 t )(b3~

where,

u= U+E-yv KC(E 2+E 2) 2

b K b2  b3 ( U2+V2+~~ ~ =b (U2+v2 ) X2]
3Lc 2, J IX 2) x

1i= E 2t 1
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The present study was concerned with only single species

systems. Therefore, the first and second rows and columns

of IASI are eliminated; the second and seventh rows and second

and fifth columns in RX are eliminated; the second and fifth

rows and second and seventh columns of RA1 are eliminated.

This reduces the rank of the system from seven to five.
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